Properties of Non-Structural Concrete Made with Mixed Recycled Aggregates and Low Cement Content
نویسندگان
چکیده
In spite of not being legally accepted in most countries, mixed recycled aggregates (MRA) could be a suitable raw material for concrete manufacturing. The aims of this research were as follows: (i) to analyze the effect of the replacement ratio of natural coarse aggregates with MRA, the amount of ceramic particles in MRA, and the amount of cement, on the mechanical and physical properties of a non-structural concrete made with a low cement content; and (ii) to verify if it is possible to achieve a low-strength concrete that replaces a greater amount of natural aggregate with MRA and that has a low cement content. Two series of concrete mixes were manufactured using 180 and 200 kg/m³ of CEM II/A-V 42.5 R type Portland cement. Each series included seven concrete mixes: one with natural aggregates; two MRA with different ceramic particle contents; and one for each coarse aggregate replacement ratio (20%, 40%, and 100%). To study their properties, compressive and splitting tensile strength, modulus of elasticity, density, porosity, water penetration, and sorptivity, tests were performed. The results confirmed that the main factors affecting the properties analyzed in this research are the amount of cement and the replacement ratio; the two MRAs used in this work presented a similar influence on the properties. A non-structural, low-strength concrete (15 MPa) with an MRA replacement ratio of up to 100% for 200 kg/m³ of cement was obtained. This type of concrete could be applied in the construction of ditches, sidewalks, and other similar civil works.
منابع مشابه
Investigating properties of fresh and hardened self-compacting concrete made of recycled aggregates
Self-compacting concrete is a new high performance concrete with high ductility and segregation resistance. In recent years, construction material manufacturers have focused their attention on lightweight concrete and have strived to use lightweight concrete, if possible, in load-bearing parts of buildings. Concrete with both self-compacting and lightweight properties is favourable in this cont...
متن کاملUpscaling the Use of Mixed Recycled Aggregates in Non-Structural Low Cement Concrete
This research aims to produce non-structural concrete with mixed recycled aggregates (MRA) in upscaled applications with low-cement content. Four slabs were executed with concrete made with different ratios of coarse MRA (0%, 20%, 40% and 100%), using the mix design, the mixing procedures and the facilities from a nearby concrete production plant. The analysis of the long-term compressive and s...
متن کاملA study on strength and durability of self-compacting concretes made of recycled aggregates
Given the development of construction industry and design and implementation of high rise buildings with complex sections and various geometrical forms, the use of self-compacting concretes has received the attention of construction engineers and provided great advantages. Due to the increasing air pollution in cities, governments encounter the important issue of repelling the pollutants in whi...
متن کاملRheological properties of self-consolidating concrete made by crushed waste tile aggregates
In recent decades, the use of self-consolidating concrete has become widespread. Hence, recognizing the various properties of self-consolidating concrete are essential. In this study, several mixture designs have been tested and final mixture design of crushed tile aggregates which were replaced by 0%, 25 %, 50%, and 100% volume percentage of natural aggregates were conducted. To evaluate fresh...
متن کاملImprovement of Bearing Capacity in Recycled Aggregates Suitable for Use as Unbound Road Sub-Base
Recycled concrete aggregates and mixed recycled aggregates are specified as types of aggregates with lower densities, higher water absorption capacities, and lower mechanical strength than natural aggregates. In this paper, the mechanical behaviour and microstructural properties of natural aggregates, recycled concrete aggregates and mixed recycled aggregates were compared. Different specimens ...
متن کامل